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Abstract— In recent years, studies have been dedicated
mainly in the analysis, of crashes in real-world related to
large-scale software systems. A crash in terms of computing
can be termed as a computer program such as a software
application that stops functioning properly. Software crash
isa serious problem in production environment. When crash
happens, the crash report with the stack trace of software at
time of crash is sent to the developer team. Software
devel opment team may receive hundreds of stack traces from
all deployment sites and many stack traces may be due to
same problem. If the developer starts analyzing each trace, it
may take a longer duration of time and redundancy many
happen in terms of two developers fixing the same problem.
This motivates us to present the solution to analyze the stack
traces and find the important functions responsible for crash
and rank them, so that development resources can be
optimized. In this paper we have proposed the solution to
solve the problem by devel oping Software CrashLocator.
Keywords— Crash Locator, Windows Error Reporting,
Crash Report, Mozilla Crash Reporter.

I INTRODUCTION
Software crashes are the severe manifestation folae
faults. Software Crashes are required to be fixeth &
higher priority. Many crash reporting systems tonpaa few
includes
Reporter [2], and Mozilla Crash Reporter [25] haween

Various fault localization techniques (e.g., [1, P4, 22])
over the years, have been proposed so that maptthe
developers to locate faults. By static analysisboth the
failing and passing execution traces of test catfesse
techniques suggest list of suspicious programiestit.ater
the developers can examine the ranked list of simfs
entities to locate faults. However, these techradioe fault
localization requires complete information of pagsiand
failing execution traces, in case of crash repdytgically
contain only information of crash stacks that duenped at
the time of crashes.

In paper [26], authors proposed a novel techniqamed
CrashLocator, for locating the crashing faults dase static
analysis techniques and crash stacks.
technique mainly targets an locating faulty functioas
functions are commonly used in unit testing and heipful
for crash reproducing [5, 16]. In case of widelgdisystem,
one crashing fault might result in triggering agemumber
of crash reports. A sufficient number of crash letacan
therefore be used by CrashLocator for locatingdtashing
faults. CrashLocator initially expands the crashcks into
approximate crash traces (the failing executioresathat
lead to crash) using static analysis techniquelsiding call
graph analysis, backward slicing and control flovalgsis.
For the purpose of effective fault localizationa€nLocator

Windows Error Reporting [14], Apple Craslpplies the concept termed term-weighting [24]:atowy

crashing faults is treated as the problem of tereighting,

proposed and deployed. These Error Reporting sygstene., calculating importance of the functions (tgrfor a

automatically collect relative information like efsed
modules and crash stack) at the time of crash thister the
similar crash reports that are likely to be causgdhe same
fault into buckets (categories), and then preshat drash
information to the developers for debugging.

Existing crash reporting systems [2, 14, 25] foous

collecting and later bucketing crash reports. Thiéected

crash information is mainly useful for debuggingpmse,
but these systems do not support automatic loc¢elizaf

crashing faults. As a result, for debugging crastwstrivial

manual efforts are required.
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bucket of crash traces (documents). CrashLocatosiders
several factors to weigh a function: the frequenéythe
function appearing in the bucket of crash tracdse
frequency of a function appearing in the crash esaof
different buckets, the distance between the crasht @and
function, and the size of a function. Using theelisfactors,
CrashLocator calculates the suspiciousness scar@doh
function in approximate crash traces. Finallyaaked list
of suspicious faulty functions is given to develapeThis
helps the developers to examine the top N retuftnections
that helps them to locate crashing faults.
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In crash locator, for calculating the score, lingfscode
parameter is used. This parameter is not effettivank the
functions as number of lines is not a indicatot fhaction is
error prone. Considering these problems in Crashtoscwe
propose Software CrashLocator with better rankirejrics
than CrashLocator.

Il. RELATED WORK
In recent years, analysis of crashes of real-wdaldje-scale

applied by Zhang et al. for fault localization iogntifying
the set of program entities that could affect tladu®s of
variables in a given program point. Artzi et al., [3]
proposed methods for fault localization that legera
combined concrete and symbolic executions. F. $¢ramad
J. Jones leveraged statistical fault localizatiesults and
history of source code to assign the faults todineelopers.
Many inputs are required by these techniques ssctest
cases, complete initial bug reports and executiaces. Our

software systems, many studies have been dedicatedapproach utilizes only the crash stack information.

order to automatically collect the crash informatifsom
field, many crash reporting system have been deplokor
example, Microsoft deployed the distributed systeatlied
Windows Error Reporting (WER) [14]. It has colledtever
billions of crash reports [14] during its ten yeao§
operation. These crash reports have helped thelapers
diagnose problems. On receiving the crash repaeresh
reporting system needs to organize these crashtsejpbo
categories. This process of organizing the simdeash
reports that are caused by the same problem ia tdtened
as bucketing [14]. Dang et al. [11] based on cédicls
similarity a method was proposed for finding thenitar
crash reports. Sung et al. [19] also proposed @adeto
identify the duplicate crash reports based on laiity of
crash graphs.

Ganapathi et al. [13] analyzed crash data of WisdXP
kernel and found poorly-written device driver codee

Liblit et al. [20, 21] proposed a sparse sampliresea
statistical debugging method that can reduce tleeh@ad of
instrumentation in released program. Their sampling
instrumentation technique incurs less than 5% stowdat
1/1000 sampling rate. However, as they pointed lowter
sampling rate means that more sampling traces frsens
are required in order to observe the rare events, (the
observation of faulty entity execution). Therefotieir
method is more suitable for popular and widely used
software, while our approach only relies on cratdcks
collected by a crash reporting system. Furthermtreir
approach requires users to execute specially msinted
software releases, while our approach requires ahéy
normal releases of software.

Chilimbi et al. proposed an adaptive and iterafivefiling
method called Holmes [8] to locate post-releaseltdau
Holmes also considers functions in stack that dwsec to

predominant cause for OS crashes. Several methas the crash point as more important ones. Our apprésc
proposed by researchers, for reproducing the csadhar different in that Holmes needs to instrument thegpsm and
example, ReCrash [5] a method to generate unis tibstt collect the dynamic information from end-users. dAleur
reproduce the given crash based on captured prograpproach considers more factors such as the freguas
execution information was proposed. Csallner angkll as the inverse bucket frequency of a functibshok et
Smaragdakis also proposed methods for unit tese cas proposed a tool called DebugAdvisor [6], whican

generation for reproducing the crashes [9, 10].

The work described above mainly deals with
construction of a crash reporting system, the cause
crashes, and the reproduction of crashes. Andaaleous on
software crash reports analysis is done. Unlike @heve
described work, we also address the problem oftiloga
crashing faults, to facilitate debugging activities

Besides statistical techniques of fault localizationany
other techniques have been proposed inorder tditdidei
debugging [27]. For example, consider Yoo et abppsed
Information Theory based techniques that can hetjuce
fault localization costs and help improve the dffemess
[25]. Zhou et al. proposed information retrievedsbd
approach, which can help locate faulty files basedthe
initial bug reports. Jiang et al. [15] proposed teatraware
statistical debugging method that can help notyanl
locating the bug but also provide faulty contrawi paths.
Delta debugging simplifies failed test cases ambg@rves the
failures, producing cause-effect chains and linkingm to
the suspicious statements. Program slicing teclsiquere
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facilitate debugging by searching for similar buagat have

thieeen resolved before. DebugAdvisor requires thesuse

specify their debugging context as a “fat queryhiah
contains all the contextual information such as bug
descriptions. Unlike DebugAdvisor, our work onlyguéres
source code and crash stacks.

Jin and Orso proposed a failure reproducing toagheth
BugRedux [16]. BugRedux collects different kinds of
execution data from end users and reproduces fidligres
using symbolic analysis. The exploration study agRedux
shows that function call sequence is the most effedata
for reproducing faults. To collect function callgsence, the
instrumentation overhead is from 1% to 50%, on ager
17.4%. Based on BugRedux, Jin and Orso also prdpibse
F3 approach [17] for localizing field failures. kR&es the
collected execution data to generate multiple passind
failing executions, which are similar to the obsahfield
failures. Both BugRedux and F3 focus on failure
reproduction or localization by analyzing an obserfailure
report one at a time. Our work targets at crasHangt
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localization by statistically analyzing a large ambof crash
data collected from different users. Besides, owrkwis
different from BugRedux and F3 in that our approdoes

So due to dynamic analysis, complete stack tr&eeldelow
is generated
C.fun3

not require code instrumentation and would not eauB.fun2

performance overhead.

M. PROBLEM DEFINITION
Given a set of stack traces and the source codesytstem
must find the core functions responsible for thasbrand
rank them in order of importance.
The solution to fixing the crashes from analyzirghetrace
is now translated to fixing important functions pessible
for crash and it happens in most of software, shmetions
are responsible for many crashes. So developert etffo
analyze each stack trace to fix the crash is holwaed.
I. Software CrashLoactor - Proposed Solution
The Software CrashLocator solution consists ofghre
important modules

1. Static Analysis
2. Dynamic Analysis
3. Scoring and Ranking Functions

Static Analysis

In static analysis, the source code is taken as iapd call
graph is created for the source code.

Call Graph is of form

< From Classname, From Functionname, To Classname,

Functionname>

The call graph is created by visiting each claghéncode
and traverse each function in the class to fincctass and
functions invoked.

Dynamic Analysis

In dynamic analysis, each crash trace is analyadidd the
calling order of function in the stack trace.

Say below is an example stack trace.

C.fun3

B.fun2

A.funl

The stack trace may not be complete.

Say A.funl has called A.fun2 which returns a outpt

parameter and that output parameter is passedpas o
B.fun2 and from there to C.fun3 and crash has haguhe

Now the reason for crash is the output parametem fr

A.fun2 which is not covered in the stack trace taslstrace
gives only the snapshot at time of crash.

To complete the stack trace, information of calbmr
obtained from static analysis is used to fill thecavered
functions in the stack trace
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A.fun2
A.funl
Scoring and ranking functions

In this step a matrix of crash report ID vs fioes is
made. In this matrix, if function is covered in thiack trace

of the crash report value in matrix is set as & él& 0.

Table.1: The Crash Traces

fi f2 ficg | fm
Ty 1 0 - 1 1
T, 1 1 1 1
1 1 0 1

Tie-1
T 1 0 0 1

Each functions is given a score based on followmagrics
1. Functional Frequency(FF)

Inverse Bucket Frequency(IBF)

Cyclometric Complexity(CC)

Inverse Average Distance to Crash Point (IAD)

Number of times where function is referred in stati

call graph.(NC)

The final score of the function is given as

FS = FF *IBF * CC* IAD * NC

FF is the function frequency. The number of timasction

occurred in crash.

ar b

FF(f,B) =42

""-E'

It is calculated as Number of times functions appeaided
by number of crash.

IBF is inverse bucket frequency.

#E
IBF(f) = log(—+1)

B is the number of crash and Bf is the number afsler

where function occurs.

CC is the cyclometric complexity

IAD is inverse average distance to crash pointchvigives
the measure of distance to crash point.

NC is the number of times where function is reféria
static call graph.
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After calculating the score, the functions are exhkin
descending order of score.

IV. RESULTS
Software CrashLocator solution is implemented iVAA
The snapshots of the system is below

Jar File | | Browse
T
STATIC ANALYSIS |
Stack Trace Folder BROWSE

‘ DO FUNETION SCORING |

The jar files of entire source code is given asiirgnd from
this jar file, static analysis is done

& Crash Locator =

| Configuration | Log | Function Scoring | Statistics |

¥
s
'
1 | "
i Jar File \divya r s\Desktop\CrashlocatorCadeiTesiMe |a|| ‘ BROWSE
\ |
f§ Message ﬂ
L STATIC ANALYSIS =N\
! 'A__I)_F Static analysis complated
Stack Trace Folder ‘ BROWSE
DYNAMIC ANALYSIS ‘ ‘ DO FUNCTION SCORING
The result of static analysis is done
(2] Crash Locator = =
[c ion [ Log | Function Scoring | Statistics |
Class -f1A, Function-1 Complexity=7 o

Class -<init=, Function-1 Compiexity=5
Class -TestMe, Function-main Compiexity=2 —
Class -<init=, Function-1 Compiexity=5
Class -B, Function-f1B Complexity=1
Class -<init=, Function-1 Compiexity=5
Class -C, Function-f1C Complexity=1
Class -<init=, Function-1 Compiexity=5
Static analysis resuits , call graph
Af1A===java.io.PrintStream.printin

C.

C.fiC===java.io.PrintStream.printin
Testhe.main===A.f1B
Te!

eption.printStack Trace

1]

For dynamic analysis, the folder where all stadcés is
kept is given as input
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L] Crash Locatar ==
C jon | Log | FunctionScoring | Stabistics |
| |
Jar file i.m’wa rsiDeskiop\CrashLocatorCodeTesthe al BROWSE

Message

STATIC ANALYSIS =2
“_L.J Dynamic analysis completed

Stack Trace Foider  (divyar | BROWSE
DYNAMIC ANALYSIS ‘ BO FUNETION SCORING

After dynamic analysis, the complete stack trace

displayed.
(2] Crash Locator = =
(Conﬁguration r Log |’ Function Scoring rstatistics |
Class -<init=, Function-1 Complexity=5 -

Class -C, Function-f1C Complexity=1

Class -=init=, Function-1 Complexity=5

Static analysis results , call graph
Af1A===java.io.PrintStream.printin

AfB===CMC

AfB===Bf18

Affc===CFIC

B f1B===java io PrintStream printin

BfiB===Afc

C.f1C===java.io.PrintStream.printin
TestlMe.main===Af18

TestMe main===java lang Exception printStack Trace
Compilete stack trace for C:\Users\divya r s\Desktop\CrashLocatorCode\stacktraces\stacktrace 1.bxt
TesthMe-main

A-f1B

B-f18

After static and dynamic analysis, function scorlimgone to
rank the functions

] Crash Locator

[ Configuration |Log |  Function Scoring | Statistics |

- N

Class Function Total Score Seperate Score
A 1B 0.48 FF=1,BF=0.69,1AD=0.33  CC=2
B 1B 0.35 FF=1,BF=0.69,1AD=0.5, CC=1
Testhle main 0.35 FF=1,BF=0.69,1AD=0.25 , CC=2

Functions score are calculated and functions displan the
descending order of score.

The function which appears first is most importantix and
functions which appears last is least importantcfiom to
fix.

V. CONCLUSION

In this paper we have proposed the solution fadifig the
functions which are responsible for crash and ramkhose
functions by analyzing the stack trace of craslorsp Later
Rank the function based on the scores obtainedsing uhe
metric listed above and reduce the developer eiifiotérms
of analyzing each crash in fixing the functionsttresulted
in the occurrence of crash.
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